PHY 181: Spring 2023 Midterm Sample test

Useful facts

Prefix	Symbol	Multiple
giga-	G	10^{9}
mega-	M	10^{6}
kilo-	k	10^{3}
hecto-	h	10^{2}
deca-	da	10^{1}
-	-	$10^{0}=1$
deci-	d	10^{-1}
centi-	c	10^{-2}
milli-	m	10^{-3}
micro-	μ	10^{-6}
nano-	n	10^{-9}

$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$1 \mathrm{~kg}=2.205 \mathrm{lbm}$
$g_{\text {moon }}=1.625 \mathrm{~m} / \mathrm{s}^{2}$
$1 \mathrm{lbf}=4.45 \mathrm{~N}$
$1 \mathrm{~m}=1.094 \mathrm{yd}$
1 inch $=2.54 \mathrm{~cm}$

$$
\begin{array}{lcc}
s=\frac{\Delta d}{\Delta t} & \Delta d=s \Delta t & \Delta t=\frac{\Delta d}{s} \\
\vec{v}=\frac{\Delta \vec{d}}{\Delta t} & \Delta \vec{d}=\vec{v} \Delta t & \Delta t=\frac{\Delta \vec{d}}{\vec{v}} \\
\vec{a}=\frac{\Delta \vec{v}}{\Delta t} & \Delta \vec{v}=\vec{a} \Delta t & \Delta t=\frac{\Delta \vec{v}}{\vec{a}} \\
\vec{F}=m \vec{a} & m=\frac{\vec{F}}{\vec{a}} & \vec{a}=\frac{\vec{F}}{m} \\
\vec{W}=m \vec{g} & \vec{g}=\frac{\vec{W}}{m} & m=\frac{\vec{W}}{\vec{g}} \\
\vec{v}_{r e l}=\vec{v}_{o b j}-\vec{v}_{r e f} & \vec{v}_{o b j}=\vec{v}_{r e l}+\vec{v}_{r e f} \\
\vec{v}_{r e f}=\vec{v}_{o b j}-\vec{v}_{r e l} &
\end{array}
$$

1: Box or circle each vector in the list below.

8	-16 down	54	8 cm left
τ	$\frac{9}{4}$ in right	-6 ft	3 left

2: Box the biggest number and underline the smallest number in each row.

6×10^{-2}	-3×10^{-15}	7×10^{-2}
65 mg	65 cg	65 dag
5.4 cm	5.4 Gm	$5.4 \mu \mathrm{~m}$

3: Perform the following conversions.
-Convert 56 Tg to g .

- Convert 20 cm to km .
-Convert 101 lb (mass) to kg

4: Circle or box each SI unit below.

lbf	$m L$	pint	m
L	s	Tg	lbm

5: If an object travels a distance of 9 m in 3 s , what is the objects speed?

6: How far does an object travel in 9s if its speed is $3 \mathrm{~m} / \mathrm{s}$?

7: A group drives from point A to point B the long way. It takes them 1 hour. What is their average velocity? (I call the direction $\overrightarrow{A B}$ to mean from A to B.) What is their average speed?

8: If an object has a mass of 50 kg and is accelerating at $5 \mathrm{~m} / \mathrm{s}^{2}$ leftward, what is the force exerted on the object?

9: If an object with a mass of 8 kg has a net force exerted on it of 24 N upward, what is the objects acceleration?

10: What is the weight of an object (on earth) that has a mass of 75 kg ?

11: Find the net force on an object being pulled in two directions in each of the following scenarios. (It is recommended to draw a picture.)

- The forces are 12 N East and 17 N West.
- The forces are 22 N left and 16 N right.

12: If a car is traveling at 130 mph West relative to you and you are traveling at 70 mph East relative to the ground, how fast is the car traveling relative to the ground?

Answers

1: -16 down, 8 cm left, $\frac{9}{4}$ in right, 3 left

2:	7×10^{-2}	-3×10^{-15}	$65 d a g$	65 mg
5.4Gm				

$3: 56 \mathrm{Tg}=5.6 \times 10^{13} \mathrm{~g} \quad 20 \mathrm{~cm}=2.0 \times 10^{-4} \mathrm{~km}$ $101 \mathrm{lbm}=4.58 \times 10^{1} \mathrm{~kg}$

4: mL, m, L, s, Tg
5: $3 \mathrm{~m} / \mathrm{s}$
6: 27 m
7: $\vec{v}_{a}=17 \mathrm{~km} / \mathrm{hr} \overrightarrow{A B}, s_{a}=23 \mathrm{~km} / \mathrm{hr}$
8: $\vec{F}_{n e t}=250 \mathrm{~N}$ leftward
9: $\vec{a}=3 \mathrm{~m} / s^{2}$ upward
10: $\vec{W}=735 \mathrm{~N}$ Downward
11: $\vec{F}_{n e t}=5 \mathrm{~N}$ West $\quad \vec{F}_{n e t}=6 \mathrm{~N}$ left
12: $\vec{v}_{o b j}=60 \mathrm{mph}$ West

