PHY 181: Summer 2023
 Final exam sample problems

Useful facts

This section does not contain all that you need to know for the test.
$m_{\text {electron }}=9.109 \times 10^{-31} \mathrm{~kg} \quad \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
& \Delta x=x_{f}-x_{i} \quad x_{f}=\Delta x+x_{i} \quad x_{i}=x_{f}-\Delta x \\
& \left|\vec{F}_{f}\right|=\mu \vec{F}_{N} \quad \mu=\frac{\left|\vec{F}_{f}\right|}{\left|\vec{F}_{N}\right|} \quad \vec{F}_{N}=\frac{\vec{F}_{f}}{\mu} \\
& \vec{p}=m \vec{v} \quad \vec{v}=\frac{\vec{p}}{m} \quad m=\frac{\vec{p}}{\vec{v}} \\
& \vec{J}=\vec{F} \Delta t \quad \vec{F}=\frac{\vec{J}}{\Delta t} \quad \Delta t=\frac{\vec{J}}{\vec{F}} \\
& \vec{J}=\Delta \vec{p} \quad W=\Delta E \\
& W=|\vec{F}||\vec{d}| \quad|\vec{F}|=\frac{W}{|\vec{d}|} \quad|\vec{d}|=\frac{W}{|\vec{F}|} \\
& P=\frac{W}{\Delta t} \quad W=P \Delta t \quad \Delta t=\frac{W}{P} \\
& v=\sqrt{\frac{2 E_{k}}{m}}
\end{aligned}
$$

Questions 1 to 3 refer to the table below.
Using the relationship between normal force and friction force, fill in the table below.

$\left\|F_{N}\right\|(\mathrm{N})$	μ	$\left\|F_{f}\right\|(\mathrm{N})$
10	0.2	A
96	B	8
C	0.8	80

1: What is the value of field A?

2: What is the value of field B ?

3: What is the value of field C?

4: Suppose that an object with a weight of 980 lbf downward and a kinetic coefficient of friction of 0.75 is being pulled with a force of $7001 b f$ horizontally. If the object is currently in motion on a flat surface, will the object remain in motion? (4 points)

Questions 5 to 7 refer to the table below.
Using the definition of momentum, complete the table below.

$\mathrm{m}(\mathrm{kg})$	$\vec{v}(\mathrm{~m} / \mathrm{s}$ North)	\vec{p} (Ns North)
3	9	D
8	E	96
F	15	90

5: What is D ? (2 points)

6: What is E ? (2 points)

7: What is F ? (2 points)

8: Suppose that electrons are accelerated up to $5.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$. What is the magnitude of the momentum of an electron at this speed? (Ignore relativistic effects.) (5 points)

Questions 9 to 12 refer to the table below. Use the relationship between impulse and momentum to fill in the chart below. The direction in all vectors is Northward.

$\vec{F}(\mathrm{~N})$	$\Delta t(\mathrm{~s})$	$\vec{J}(\mathrm{~N} \cdot \mathrm{~s})$	$\overrightarrow{p_{f}}(\mathrm{~N} \cdot \mathrm{~s})$	$\overrightarrow{p_{i}}(\mathrm{~N} \cdot \mathrm{~s})$
8	3	G	H	12
9	I	81	-8	J

9: What is the value for field G? (2 points)

10: What is the value for field H ? (2 points)

11: What is the value for field I? (2 points)

12: What is the value for field J? (2 points)

Questions 13 to 14 refer to the chart below. Fill in the chart below.

$\|\vec{F}\|(\mathrm{N})$	$\Delta d(\mathrm{~m})$	$\mathrm{W}(\mathrm{J})$
700	5	K
400	L	3200

13: What is the value for field K ? (2 points)

14: What is the value for field L? (2 points)

Questions 15 to 22 refer to the chart below. Suppose you throw a 2 kg cannonball off a bridge. The bridge is 20 m tall. Note that the initial velocity is not zero. All vectors point downward. Take a height of zero to refer to the height moments before impact. Ignore air resistance.

$\Delta h(\mathrm{~m})$	$\vec{v}(\mathrm{~m} / \mathrm{s})$	$E_{p}(\mathrm{~J})$	$E_{k}(\mathrm{~J})$	$E_{T}(\mathrm{~J})$
20	4	M	N	P
10	-	Q	R	S
0	V	T	U	-

15: What is the value for field M ? (2 points)

16: What is the value for field N ? (2 points)

17: What is the value for field P ? (2 points)

18: What is the value for field Q? (2 points)

19: What is the value for field R ? (2 points)

20: What is the value for field S ? (2 points)

21: What is the value for field T? (2 points)

22: What is the value for field U ? (2 points)

23: What is the value for field V (2 points)

Questions 24 to 25 refer to the chart below. Note that the first column is work with units of Joules. The third column is power with units of Watts.

$\mathrm{W}(\mathrm{J})$	$\Delta \mathrm{t}(\mathrm{s})$	$P(\mathrm{~W})$
300	2	W
40	X	5

24: What is the value for field W ? (2 points)
This page intentionally left blank.

25: What is the value for field X ? (2 points)

1. 2
2. 0.083
3. 100
4. $\left|F_{k f}\right|=735 \mathrm{lbf}$. Therefore, the object will not remain in motion.
5. 27
6. 12
7. 6
8. $4.5545 \times 10^{-24} \mathrm{~N} \cdot \mathrm{~s}$
9. 24
10. 36
11. 9
12. -89
13. 3500
14. 8
15. 392
16. 16
17. 408
18. 196
19. 212
20. 408
21. 0
22. 20.2
23. 150
24. 8
