PHY 181: Summer 2023 Worksheet 5

Name: \qquad Date:

1 Work

Fill in the missing entries in the table below.

\vec{F} (N North)	\vec{d} (m North)	$\mathrm{W}(\mathrm{J})$
10	50	
80	33	
22	100	
75		300
5		25
3		27
	11	33
	0.50	100
	0.25	50

2 Energy

2.1 Potential Energy

Fill in the missing entries below. Assume that the objects are on Earth.

$\mathrm{m}(\mathrm{kg})$	$\mathrm{h}(\mathrm{m})$	$E_{P}(\mathrm{~J})$
100	2	
22	-4	
5		490
2		-98
	20	196
	-5	-392

2.2 Kinetic Energy

Fill in the missing entries in the table below.

$\mathrm{m}(\mathrm{kg})$	$\mathrm{v}(\mathrm{m} / \mathrm{s}$ leftward $)$	$E_{k}(\mathrm{~J})$
5	4	
20	5	
4		32
3		48
	3	27
	4	64

3 Conservation of Energy

Suppose that there is an object with a mass of 5 kg . It is thrown off of a 50 m tall bridge with an initial velocity of $8 \mathrm{~m} / \mathrm{s}$ downwards. Note that height is measured from the bottom of the ravine. Interpret $\mathrm{h}=0$ to be just before impact. Fill in the following table.

$\mathrm{h}(\mathrm{m})$	$\vec{v}(\mathrm{~m} / \mathrm{s}$ downward $)$	$E_{p}(\mathrm{~J})$	$E_{k}(\mathrm{~J})$	$E_{\text {Total }}(\mathrm{J})$
50	8			
30				
10				
0				

Suppose that an object with a mass of 5 kg is shot with a velocity of $39.2 \mathrm{~m} / \mathrm{s}$ upwards. Fill in the table below. Please keep at least one digit after the decimal point for each item.

$\mathrm{h}(\mathrm{m})$	$\vec{v}(\mathrm{~m} / \mathrm{s}$ upward $)$	$E_{p}(\mathrm{~J})$	$E_{k}(\mathrm{~J})$	$E_{\text {Total }}(\mathrm{J})$
0	39.2			
58.8				
	0			

4 Power

Fill in the following table.

$\mathrm{W}(\mathrm{J})$	$\Delta \mathrm{t}(\mathrm{s})$	$\mathrm{P}(\mathrm{W})$
20	4	
512	64	
30		10
81		27
	5	10
	16	4

Suppose that a mass of 10000 kg descends 20 m . What is the change in potential energy?
\qquad

If that mass takes 4 seconds to fall, what is the power that could be extracted if all the converted potential energy were captured?

