PHY 181: Summer 2023 Worksheet 4

Name:

1 Friction

1.1 Static Friction Introduction

Fill in the missing entries in the table below.

\vec{F}_N (N upward)	μ_s	\vec{F}_f (N leftward)
10	0.50	
80	0.33	
22	1.00	
200		50
25		25
81		27
	0.75	33
	0.50	100
	0.25	50

$$|\vec{W}|=200; \ \mu_s = .75 \ |\vec{F}|=155:$$

 $|\vec{W}|=20; \ \mu_s = .25 \ |\vec{F}|=6:$

1.3 Kinetic Friction

Fill in the missing entries in the table below.

\vec{F}_N (N upward)	μ_k	\vec{F}_f (N leftward)
16	.50	
20		5
	.40	20

If an object is being pushed on a flat surface under the following conditions, will it keep sliding? Let the units be in Newtons.

$$|\vec{W}|=100; \ \mu_k = .75; \ |\vec{F}|=70:$$

$$|\vec{W}|=150; \ \mu_k = .50; \ |\vec{F}|=80:$$

1.2 Static Friction Continued

Consider a box on flat ground with a weight and a coefficient of friction as stated below. Let the forces have units of lbf. Would the force indicated move the box? True or false.

$$|\vec{W}| = 100; \ \mu_s = .50; \ |\vec{F}| = 20:$$

Date: ____

2 Momentum

Fill in the following table.

\vec{v} (m/s North)	m (kg)	\vec{p} (N·s North)
15	4	
10	5	
1	20	
	10	50
	9	27
	8	32
10		20
100		40
60		240

3 Impulse

Fill in the following table.

\vec{F} (N North)	t (s)	\vec{J} (N·s North)
12	3	
8	5	
2	30	
	15	60
	3	33
	8	48
5		20
32		4
6		36

4 Momentum and Impulse

Fill in the following table. All directions are north.

\vec{J} (N·s)	$\vec{p_i}$ (N·s)	\vec{p}_f (N·s)
15	5	
-2	8	
	20	40
	8	-8
5		20
5		35

5 Conservation of Momentum

Suppose that there is a closed system with two objects. The first one has a mass of 2kg and the second one has a 5kg. Let the direction be right. Fill in the following table.

$\vec{p}_1 (N \cdot s)$	\vec{p}_2 (N·s)	\vec{p}_{total} (N·s)
12	-15	
36		
	-20	

Compute the velocities for each row in the above table.

Row	$\vec{v}_1 \ (m/s \ right)$	$\vec{v}_2 \ (m/s \ right)$
1		
2		
3		