PHY 181: Summer 2023 Worksheet 4

Name: \qquad Date: \qquad

1 Friction

1.1 Static Friction Introduction

Fill in the missing entries in the table below.

\vec{F}_{N} (N upward)	μ_{s}	\vec{F}_{f} (N leftward)
10	0.50	
80	0.33	
22	1.00	
200		50
25		25
81		27
	0.75	33
	0.50	100
	0.25	50

1.2 Static Friction Continued

Consider a box on flat ground with a weight and a coefficient of friction as stated below. Let the forces have units of lbf. Would the force indicated move the box? True or false.

$$
|\vec{W}|=100 ; \mu_{s}=.50 ;|\vec{F}|=20
$$

\qquad

$$
|\vec{W}|=200 ; \mu_{s}=.75|\vec{F}|=155:
$$

\qquad

$$
|\vec{W}|=20 ; \mu_{s}=.25|\vec{F}|=6:
$$

\qquad

1.3 Kinetic Friction

Fill in the missing entries in the table below.

\vec{F}_{N} (N upward)	μ_{k}	\vec{F}_{f} (N leftward)
16	.50	
20		5
	.40	20

If an object is being pushed on a flat surface under the following conditions, will it keep sliding? Let the units be in Newtons.

$$
|\vec{W}|=100 ; \mu_{k}=.75 ;|\vec{F}|=70:
$$

\qquad

$$
|\vec{W}|=150 ; \mu_{k}=.50 ;|\vec{F}|=80
$$

\qquad

2 Momentum

Fill in the following table.

\vec{v} (m/s North)	$\mathrm{m} \mathrm{(kg})$	\vec{p} (N•s North)
15	4	
10	5	
1	20	
	10	50
	9	27
	8	32
10		20
100		40
60		240

4 Momentum and Impulse

Fill in the following table. All directions are north.

$\vec{J}(\mathrm{~N} \cdot \mathrm{~s})$	\vec{p}_{i} (N•s)	$\vec{p}_{f}(\mathrm{~N} \cdot \mathrm{~s})$
15	5	
-2	8	
	20	40
	8	-8
5		20
5		35

5 Conservation of Momentum

Suppose that there is a closed system with two objects. The first one has a mass of 2 kg and the second one has a 5 kg . Let the direction be right. Fill in the following table.

$\vec{p}_{1}(\mathrm{~N} \cdot \mathrm{~s})$	$\vec{p}_{2}(\mathrm{~N} \cdot \mathrm{~s})$	$\vec{p}_{\text {total }}(\mathrm{N} \cdot \mathrm{s})$
12	-15	
36		
	-20	

Compute the velocities for each row in the above table.

Row	$\vec{v}_{1}(\mathrm{~m} / \mathrm{s}$ right $)$	$\vec{v}_{2}(\mathrm{~m} / \mathrm{s}$ right $)$
1		
2		
3		

